数组的完全随机排列算法javascript实现 |
Array.prototype.sort 方法被许多 JavaScript 程序员误用来随机排列数组。最近做的前端星计划挑战项目中,一道实现 blackjack 游戏的问题,就发现很多同学使用了 Array.prototype.sort 来洗牌。就连最近一期 JavaScript Weekly上推荐的一篇文章也犯了同样的错误。 26MVei http://blog.numino.net/ 以下就是常见的完全错误的随机排列算法: 2sqc30 http://blog.numino.net/ function shuffle(arr){ 5mv3K5 http://blog.numino.net/ return arr.sort(function(){ plEQUm http://blog.numino.net/ return Math.random() - 0.5; 64o8R0 http://blog.numino.net/ }); j95tQQ http://blog.numino.net/ } 5s7sa0 http://blog.numino.net/ 以上代码看似巧妙利用了 Array.prototype.sort 实现随机,但是,却有非常严重的问题,甚至是完全错误。 ysLmK4 http://blog.numino.net/ 证明 Array.prototype.sort 随机算法的错误 0Y8yFv http://blog.numino.net/ 为了证明这个算法的错误,我们设计一个测试的方法。假定这个排序算法是正确的,那么,将这个算法用于随机数组 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],如果算法正确,那么每个数字在每一位出现的概率均等。因此,将数组重复洗牌足够多次,然后将每次的结果在每一位相加,最后对每一位的结果取平均值,这个平均值应该约等于 (0 + 9) / 2 = 4.5,测试次数越多次,每一位上的平均值就都应该越接近于 4.5。所以我们简单实现测试代码如下: DewMng http://blog.numino.net/ var arr = [0,1,2,3,4,5,6,7,8,9]; y8sG60 http://blog.numino.net/ var res = [0,0,0,0,0,0,0,0,0,0]; jjLTmG http://blog.numino.net/ var t = 10000; 1B1Utc http://blog.numino.net/ for(var i = 0; i < t; i++){ RSajGz http://blog.numino.net/ var sorted = shuffle(arr.slice(0)); a5x1BL http://blog.numino.net/ sorted.forEach(function(o,i){ 9y7XfD http://blog.numino.net/ res[i] += o; h5MWs4 http://blog.numino.net/ }); 07Bezd http://blog.numino.net/ } 47riB2 http://blog.numino.net/ res = res.map(function(o){ M2v2tJ http://blog.numino.net/ return o / t; pIgCl7 http://blog.numino.net/ }); 2V8UT5 http://blog.numino.net/ console.log(res); 35gL2H http://blog.numino.net/ 将上面的 shuffle 方法用这段测试代码在 chrome 浏览器中测试一下,可以得出结果,发现结果并不随机分布,各个位置的平均值越往后越大,这意味着这种随机算法越大的数字出现在越后面的概率越大。 2998s0 http://blog.numino.net/ 为什么会产生这个结果呢?我们需要了解 Array.prototype.sort 究竟是怎么作用的。 GUGy6L http://blog.numino.net/ 首先我们知道排序算法有很多种,而 ECMAScript 并没有规定 Array.prototype.sort 必须使用何种排序算法。在这里,有兴趣的同学不妨看一下 JavaScriptCore 的源码实现: y6js47 http://blog.numino.net/ 排序不是我们今天讨论的主题,但是不论用何种排序算法,都是需要进行两个数之间的比较和交换,排序算法的效率和两个数之间比较和交换的次数有关系。 IpR3nK http://blog.numino.net/ 最基础的排序有冒泡排序和插入排序,原版的冒泡或者插入排序都比较了 n(n-1)/2 次,也就是说任意两个位置的元素都进行了一次比较。那么在这种情况下,如果采用前面的 sort 随机算法,由于每次比较都有 50% 的几率交换和不交换,这样的结果是随机均匀的吗?我们可以看一下例子: a7blkw http://blog.numino.net/ function bubbleSort(arr, compare){ 4F2Pmh http://blog.numino.net/ var len = arr.length; 8lU0MF http://blog.numino.net/ for(var i = 0; i < len - 1; i++){ ORD8K3 http://blog.numino.net/ for(var j = 0; j < len - 1 - i; j++){ EgV5I6 http://blog.numino.net/ var k = j + 1; vjVP6V http://blog.numino.net/ if(compare(arr[j], arr[k]) > 0){ x2MbM4 http://blog.numino.net/ var tmp = arr[j]; 0WR0CN http://blog.numino.net/ arr[j] = arr[k]; b24xEp http://blog.numino.net/ arr[k] = tmp; tXa6a1 http://blog.numino.net/ } Ln0987 http://blog.numino.net/ } QUgthh http://blog.numino.net/ } 19f1km http://blog.numino.net/ return arr; 4HIuOK http://blog.numino.net/ } cAkg94 http://blog.numino.net/ function shuffle(arr){ IRY0GC http://blog.numino.net/ return bubbleSort(arr, function(){ ybEWa4 http://blog.numino.net/ return Math.random() - 0.5; 4y28zP http://blog.numino.net/ }); 1JO0C8 http://blog.numino.net/ } 7RC1Ly http://blog.numino.net/ var arr = [0,1,2,3,4,5,6,7,8,9]; Og1xy2 http://blog.numino.net/ var res = [0,0,0,0,0,0,0,0,0,0]; 3mPwaD http://blog.numino.net/ var t = 10000; 5b3qB3 http://blog.numino.net/ for(var i = 0; i < t; i++){ 5b9EjT http://blog.numino.net/ var sorted = shuffle(arr.slice(0)); vpC5QE http://blog.numino.net/ sorted.forEach(function(o,i){ N4F2kw http://blog.numino.net/ res[i] += o; 8dqXMJ http://blog.numino.net/ }); lDWXqW http://blog.numino.net/ } 79Ds9v http://blog.numino.net/ res = res.map(function(o){ 5U9JcY http://blog.numino.net/ return o / t; eFKuO2 http://blog.numino.net/ }); 8If5k4 http://blog.numino.net/ console.log(res); 6H8H1c http://blog.numino.net/ 上面的代码的随机结果也是不均匀的,测试平均值的结果越往后的越大。(笔者之前没有复制原数组所以错误得出均匀的结论,已更正于 2016-05-10) xA8580 http://blog.numino.net/ 冒泡排序总是将比较结果较小的元素与它的前一个元素交换,我们可以大约思考一下,这个算法越后面的元素,交换到越前的位置的概率越小(因为每次只有50%几率“冒泡”),原始数组是顺序从小到大排序的,因此测试平均值的结果自然就是越往后的越大(因为越靠后的大数出现在前面的概率越小)。 02wAx1 http://blog.numino.net/ 我们再换一种算法,我们这一次用插入排序: h58W6w http://blog.numino.net/ function insertionSort(arr, compare){ Cyg1eU http://blog.numino.net/ var len = arr.length; u3629E http://blog.numino.net/ for(var i = 0; i < len; i++){ 2ko21p http://blog.numino.net/ for(var j = i + 1; j < len; j++){ bylEm7 http://blog.numino.net/ if(compare(arr[i], arr[j]) > 0){ Ov409r http://blog.numino.net/ var tmp = arr[i]; rIz574 http://blog.numino.net/ arr[i] = arr[j]; d8K7il http://blog.numino.net/ arr[j] = tmp; NuWBHN http://blog.numino.net/ } Jh7i56 http://blog.numino.net/ } 9cl7pE http://blog.numino.net/ } 79E2AM http://blog.numino.net/ return arr; hfazvp http://blog.numino.net/ } sfHCV0 http://blog.numino.net/ function shuffle(arr){ 7UdEO9 http://blog.numino.net/ return insertionSort(arr, function(){ N5F3D5 http://blog.numino.net/ return Math.random() - 0.5; YTeGCZ http://blog.numino.net/ }); VFQyrw http://blog.numino.net/ } T37M0h http://blog.numino.net/ var arr = [0,1,2,3,4,5,6,7,8,9]; r0tD3t http://blog.numino.net/ var res = [0,0,0,0,0,0,0,0,0,0]; d0BP8B http://blog.numino.net/ var t = 10000; 6O4ekt http://blog.numino.net/ for(var i = 0; i < t; i++){ rZIg4q http://blog.numino.net/ var sorted = shuffle(arr.slice(0)); bt72mj http://blog.numino.net/ sorted.forEach(function(o,i){ 3vy2yK http://blog.numino.net/ res[i] += o; 52zu9a http://blog.numino.net/ }); Efp7QI http://blog.numino.net/ } ACrccm http://blog.numino.net/ res = res.map(function(o){ wReEE6 http://blog.numino.net/ return o / t; 2QOaC3 http://blog.numino.net/ }); G2hudJ http://blog.numino.net/ console.log(res); D3jn5U http://blog.numino.net/ 由于插入排序找后面的大数与前面的数进行交换,这一次的结果和冒泡排序相反,测试平均值的结果自然就是越往后越小。原因也和上面类似,对于插入排序,越往后的数字越容易随机交换到前面。 FJwhpM http://blog.numino.net/ 所以我们看到即使是两两交换的排序算法,随机分布差别也是比较大。除了每个位置两两都比较一次的这种排序算法外,大多数排序算法的时间复杂度介于 O(n) 到 O(n2) 之间,元素之间的比较次数通常情况下要远小于 n(n-1)/2,也就意味着有一些元素之间根本就没机会相比较(也就没有了随机交换的可能),这些 sort 随机排序的算法自然也不能真正随机。 Nbu6iT http://blog.numino.net/ 我们将上面的代码改一下,采用快速排序: Dgs6FA http://blog.numino.net/ function quickSort(arr, compare){ QOwde6 http://blog.numino.net/ arr = arr.slice(0); Bywvwn http://blog.numino.net/ if(arr.length <= 1) return arr; VwQZ95 http://blog.numino.net/ var mid = arr[0], rest = arr.slice(1); 76deWg http://blog.numino.net/ var left = [], right = []; zV94FR http://blog.numino.net/ for(var i = 0; i < rest.length; i++){ UR37Tm http://blog.numino.net/ if(compare(rest[i], mid) > 0){ a30d2M http://blog.numino.net/ right.push(rest[i]); zy42XS http://blog.numino.net/ }else{ WwIeyu http://blog.numino.net/ left.push(rest[i]); Wu0de4 http://blog.numino.net/ } 4CrjDc http://blog.numino.net/ } Qa3Rd9 http://blog.numino.net/ return quickSort(left, compare).concat([mid]) C4uL5Z http://blog.numino.net/ .concat(quickSort(right, compare)); HP6Cl7 http://blog.numino.net/ } 3Q8vmR http://blog.numino.net/ function shuffle(arr){ F20S09 http://blog.numino.net/ return quickSort(arr, function(){ ys49GO http://blog.numino.net/ return Math.random() - 0.5; 90atE4 http://blog.numino.net/ }); QRuhTx http://blog.numino.net/ } 4J2crj http://blog.numino.net/ var arr = [0,1,2,3,4,5,6,7,8,9]; 8fu9s7 http://blog.numino.net/ var res = [0,0,0,0,0,0,0,0,0,0]; JeH445 http://blog.numino.net/ var t = 10000; NkvU5E http://blog.numino.net/ for(var i = 0; i < t; i++){ 4UbC5l http://blog.numino.net/ var sorted = shuffle(arr.slice(0)); 7A21UH http://blog.numino.net/ sorted.forEach(function(o,i){ hjh29E http://blog.numino.net/ res[i] += o; vRcfC2 http://blog.numino.net/ }); ZNxXhp http://blog.numino.net/ } Gl2GB5 http://blog.numino.net/ res = res.map(function(o){ 29f8WJ http://blog.numino.net/ return o / t; jpj7R1 http://blog.numino.net/ }); k79d5A http://blog.numino.net/ console.log(res); Pgu1RL http://blog.numino.net/ 快速排序并没有两两元素进行比较,它的概率分布也不随机。 DV8697 http://blog.numino.net/ 所以我们可以得出结论,用 Array.prototype.sort 随机交换的方式来随机排列数组,得到的结果并不一定随机,而是取决于排序算法是如何实现的,用 JavaScript 内置的排序算法这么排序,通常肯定是不完全随机的。 K4FZg8 http://blog.numino.net/ 经典的随机排列 AI1L9E http://blog.numino.net/ 所有空间复杂度 O(1) 的排序算法的时间复杂度都介于 O(nlogn) 到 O(n2) 之间,因此在不考虑算法结果错误的前提下,使用排序来随机交换也是慢的。事实上,随机排列数组元素有经典的 O(n) 复杂度的算法: GYv1XS http://blog.numino.net/ function shuffle(arr){ bn0x53 http://blog.numino.net/ var len = arr.length; OSg122 http://blog.numino.net/ for(var i = 0; i < len - 1; i++){ 6IC1jR http://blog.numino.net/ var idx = Math.floor(Math.random() * (len - i)); IzdeRI http://blog.numino.net/ var temp = arr[idx]; uMzuJ7 http://blog.numino.net/ arr[idx] = arr[len - i - 1]; htDHeG http://blog.numino.net/ arr[len - i -1] = temp; CLOl2I http://blog.numino.net/ } d0OtEz http://blog.numino.net/ return arr; jgb3NG http://blog.numino.net/ } 7qktlL http://blog.numino.net/ 在上面的算法里,我们每一次循环从前 len - i 个元素里随机一个位置,将这个元素和第 len - i 个元素进行交换,迭代直到 i = len - 1 为止。 M7UllK http://blog.numino.net/ 我们同样可以检验一下这个算法的随机性: FrX6gn http://blog.numino.net/ function shuffle(arr){ jXUVwW http://blog.numino.net/ var len = arr.length; fFsL93 http://blog.numino.net/ for(var i = 0; i < len - 1; i++){ FqcZ5i http://blog.numino.net/ var idx = Math.floor(Math.random() * (len - i)); KC500h http://blog.numino.net/ var temp = arr[idx]; 50Aef7 http://blog.numino.net/ arr[idx] = arr[len - i - 1]; tZuv90 http://blog.numino.net/ arr[len - i -1] = temp; feNGSX http://blog.numino.net/ } Zn3v37 http://blog.numino.net/ return arr; WW1fL1 http://blog.numino.net/ } IATKO9 http://blog.numino.net/ var arr = [0,1,2,3,4,5,6,7,8,9]; FzfcUl http://blog.numino.net/ var res = [0,0,0,0,0,0,0,0,0,0]; Tjs68s http://blog.numino.net/ var t = 10000; 9Qr59d http://blog.numino.net/ for(var i = 0; i < t; i++){ fUFw31 http://blog.numino.net/ var sorted = shuffle(arr.slice(0)); WU2Yg0 http://blog.numino.net/ sorted.forEach(function(o,i){ HQ9IIe http://blog.numino.net/ res[i] += o; vkOxXW http://blog.numino.net/ }); fFwx37 http://blog.numino.net/ } 2GCT7z http://blog.numino.net/ res = res.map(function(o){ ek4aXY http://blog.numino.net/ return o / t; BEus8E http://blog.numino.net/ }); L2Yr4f http://blog.numino.net/ console.log(res); mULjsM http://blog.numino.net/ 从结果可以看出这个算法的随机结果应该是均匀的。不过我们的测试方法其实有个小小的问题,我们只测试了平均值,实际上平均值接近只是均匀分布的必要而非充分条件,平均值接近不一定就是均匀分布。不过别担心,事实上我们可以简单从数学上证明这个算法的随机性。 0Bbx7M http://blog.numino.net/ 随机性的数学归纳法证明 mnrJC0 http://blog.numino.net/ 对 n 个数进行随机: hee519 http://blog.numino.net/ 首先我们考虑 n = 2 的情况,根据算法,显然有 1/2 的概率两个数交换,有 1/2 的概率两个数不交换,因此对 n = 2 的情况,元素出现在每个位置的概率都是 1/2,满足随机性要求。 0BdE48 http://blog.numino.net/ 假设有 i 个数, i >= 2 时,算法随机性符合要求,即每个数出现在 i 个位置上每个位置的概率都是 1/i。 tsplUV http://blog.numino.net/ 对于 i + 1 个数,按照我们的算法,在第一次循环时,每个数都有 1/(i+1) 的概率被交换到最末尾,所以每个元素出现在最末一位的概率都是 1/(i+1) 。而每个数也都有 i/(i+1) 的概率不被交换到最末尾,如果不被交换,从第二次循环开始还原成 i 个数随机,根据 2. 的假设,它们出现在 i 个位置的概率是 1/i。因此每个数出现在前 i 位任意一位的概率是 (i/(i+1)) * (1/i) = 1/(i+1),也是 1/(i+1)。 m22GIN http://blog.numino.net/ 综合 1. 2. 3. 得出,对于任意 n >= 2,经过这个算法,每个元素出现在 n 个位置任意一个位置的概率都是 1/n。 LYG1II http://blog.numino.net/ 总结 6g6Ax5 http://blog.numino.net/ 一个优秀的算法要同时满足结果正确和高效率。很不幸使用 Array.prototype.sort 方法这两个条件都不满足。因此,当我们需要实现类似洗牌的功能的时候,还是应该采用巧妙的经典洗牌算法,它不仅仅具有完全随机性还有很高的效率。 g25J93 http://blog.numino.net/ 除了收获这样的算法之外,我们还应该认真对待这种动手分析和解决问题的思路,并且捡起我们曾经学过而被大多数人遗忘的数学(比如数学归纳法这种经典的证明方法)。 Htrkkq http://blog.numino.net/ 有任何问题欢迎与作者探讨~ l3OIZc http://blog.numino.net/ 本文转载自:https://www.h5jun.com/post/array-shuffle.html
|
|